SOLUTIONS /457

Assume a + b+ ¢ < —3. The given condition ¢ > 1 implies b + ¢ < —4, whence
—3 < ¢ < b < —1. Using these inequalities, as well as b+ ¢ < 0, we have

ab+bc+ca=alb+c)+bc<b+c+bc=(b+1)(c+1)—-1<(-2)(-2)—-1=3.
Thus a + b+ ¢ < —3 implies ab + bc + ca < 3, contradicting ab + bc + ca = 3. It
follows that a + b 4 ¢ > 3, with equality if and only if a =b=c=1.

4000. Proposed by Marcel Chirita.

Let z1,29,...2, with xy > 29 > ... > 2, >0, x122...2, = 1 and n > 3. Show
that
zi + 23 .:L‘g—l—xg“.x%_l + 22 .x%—i-a;’g
Ty — T2 T2 — T3 Tp—1—Tp T1—Tp

While the inequality holds as written, the right hand side was supposed to be the
much stronger 2°™/2 ;: we apologize for the error. As a consequence however, the
solutions we received (11 in total) varied greatly in their approach. The strength of
the proven results also varied, with the right hand side being variously replaced by
27/3 2n=1 9m or (24 2¢/2)" 1, as well as the intended 2°™/2.

We present two of the solutions.
Solution 1, by Arkady Alt, modified by the editor. This solution had the best bound.
For1 <k<n-—1,let ty := ﬁ—l Note that ¢t > 1, and
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Leta:=%andnote0<a<1;then
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Since x1x2...x, = 1, it follows that
"ﬁxi-l—m%_,_l ;L'%—i—w%_n_lt%—i—l a®>+1 (1)
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For any ¢ > 1 we claim that tf__+11 > 2V/2 + 2.
To see this, note that

PH1—(2V24+2)(t—1) =124+1-2V2t -2t +2V2+2
=(t—-Vv2-1)2>0,
whence, dividing by ¢ — 1, we can obtain the claimed inequality.

On the other hand, for 0 < a < 1, it is easy to check that @l

l1—a
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In (1), we had tx > 1 and a < 1, so using the last two observations, we get

n—1
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Solution 2, by Joel Schlosberg, slightly modified by the editor. This solution addres-
sed the question of when the minimum is achieved.

Suppose a,b € R with 0 < a < b. Consider the function g(x) = %. We
claim that on the interval (a,b), g(x) has a unique minimum at = = /ab.

Multiplying,
(@) = b2a? + b%a? + 2t + 22a?
o= x(br + za — (ba + x2))

For x > 0 we can use the arithmetic mean-geometric mean inequality. In the

numerator, we have
b2a? + 2t > 2vb2a2 - 24 = 2baz?

(with equality if and only if z = v/ab), and in the denominator

ba + 22 > 2Vbaz? = 22vba

(once again, with equality if and only if x = vab). Moreover, for z € (a,b) we
have that the denominator

z(b—2z)(z —a) = x(bx + xa — (ba + x?)) > 0

and hence
b2a? + 2242 4 2baa? B b2 + a? + 2ba

z) > = .

g ~ a(bz 4 za —22vba) b+ a—2vba
Note that the right-hand side does not depend on z, and equality holds if and
only if = v/ab. This concludes the proof that, for z € (a,b), g(z) has a unique

minimum at z = v ab. Note that g is differentiable on (a,b), and so x = vab must
also be the unique critical point of g on (a,b).

Now suppose 21, z, € R are fixed, with z; > 2z, > 0, and define f : R" 2 — R by

2 2
1 zf—i—zg o1tz

21 " Zpn Z1 — 22 Zn—1 — Zn

f : (22,...,271_1) —

Consider the domain
D .= {(tz,... atn—l) S R"2: 21>t > >t > Zn}.

As (22,...,2n—1) approaches the boundary of D, some z,_1 — z; — 0, and so
f — +o0. Since f is real-valued and continuous on the open domain D, an absolute
minimum value of f must be attained at a critical point. The partial derivatives

Cruz Mathematicorum, Vol. 41(10), December 2015



